Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters ( $\AA^{2}$ )

| $U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}$ |
| Os1 | 0.0000 | 0.0000 | 0.0000 | 0.0238 (2) |
| Cl 1 | 0.2577 (1) | 0.0244 (1) | -0.0760 (1) | 0.0360 (6) |
| P1 | 0.0343 (1) | 0.1507 (1) | 0.0901 (1) | 0.0287 (6) |
| P2 | 0.0212 (1) | 0.2115 (1) | -0.1584 (1) | 0.0311 (6) |
| C1 | 0.1064 (4) | 0.3268 (3) | -0.0266 (3) | 0.0413 (28) |
| C2 | 0.1454 (3) | 0.3310 (3) | -0.1521 (3) | 0.0385 (26) |
| C11 | -0.1125 (3) | 0.2036 (3) | 0.1900 (3) | 0.0336 (25) |
| C12 | -0.1016 (4) | 0.2347 (3) | 0.2828 (3) | 0.0440 (30) |
| C13 | -0.2149 (5) | 0.2809 (4) | 0.3503 (3) | 0.0594 (39) |
| C14 | -0.3387 (4) | 0.2980 (4) | 0.3250 (4) | 0.0651 (44) |
| C15 | -0.3484 (4) | 0.2736 (4) | 0.2307 (4) | 0.0631 (46) |
| C16 | -0.2361 (4) | 0.2270 (4) | 0.1628 (4) | 0.0500 (36) |
| C21 | 0.1623 (3) | 0.1060 (3) | 0.1676 (3) | 0.0359 (27) |
| C22 | 0.3053 (4) | 0.1476 (4) | 0.1047 (3) | 0.0488 (36) |
| C23 | 0.4060 (4) | 0.1031 (5) | 0.1581 (5) | 0.0665 (52) |
| C24 | 0.3626 (5) | 0.0161 (5) | 0.2765 (5) | 0.0764 (64) |
| C25 | 0.2211 (5) | -0.0228 (4) | 0.3406 (4) | 0.0656 (48) |
| C26 | 0.1194 (4) | 0.0200 (3) | 0.2866 (3) | 0.0456 (33) |
| C31 | -0.1373 (3) | 0.3014 (3) | -0.1578 (3) | 0.0375 (26) |
| C32 | -0.2537 (4) | 0.2338 (4) | -0.1589 (3) | 0.0469 (32) |
| C33 | -0.3776 (4) | 0.2947 (4) | -0.1558 (4) | 0.0589 (40) |
| C34 | -0.3882 (5) | 0.4238 (5) | -0.1510 (4) | 0.0674 (46) |
| C35 | -0.2740 (5) | 0.4928 (4) | -0.1498(4) | 0.0633 (43) |
| C36 | -0.1485 (4) | 0.4336 (4) | -0.1543 (3) | 0.0498 (34) |
| C41 | 0.0996 (4) | 0.2277 (3) | -0.3123 (3) | 0.0383 (26) |
| C42 | 0.0510 (5) | 0.3154 (4) | -0.4010 (3) | 0.0564 (36) |
| C43 | 0.1111 (6) | 0.3214 (5) | -0.5156 (3) | 0.0721 (45) |
| C44 | 0.2175 (5) | 0.2423 (4) | -0.5438 (3) | 0.0661 (40) |
| C45 | 0.2666 (4) | 0.1557 (4) | -0.4574 (3) | 0.0542 (35) |
| C46 | 0.2079 (4) | 0.1486 (3) | -0.3423 (3) | 0.0434 (29) |
| $\mathrm{Cl} 2 \mathrm{~S} \dagger$ | 0.5340 (4) | 0.3950 (4) | 0.5889 (2) | 0.1906 (51) |
| C3S $\ddagger$ | 0.4164 | 0.4751 | 0.5144 | 0.0600 |

$\dagger$ Site occupancy refined to 0.928 (6).
$\ddagger$ Site occupancy refined to 0.464 (3).
Table 2. Geometric parameters ( $\AA,^{\circ}$ )

| Osl-Cll | 2.434 (1) | P1-C21 | 1.832 (3) |
| :---: | :---: | :---: | :---: |
| Os1-P1 | 2.372 (1) | P2-C2 | 1.833 (3) |
| Os1-P2 | 2.348 (1) | P2-C31 | 1.826 (3) |
| $\mathrm{Pl}-\mathrm{Cl}$ | 1.867 (3) | P2-C41 | 1.831 (3) |
| $\mathrm{Pl}-\mathrm{Cl1}$ | 1.839 (3) |  |  |
| $\mathrm{Cll}-\mathrm{Os} 1-\mathrm{Pl}$ | 83.1 (1) | $\mathrm{C} 1-\mathrm{Pl}-\mathrm{Cll}$ | 97.7 (1) |
| $\mathrm{Cl1}-\mathrm{Os} 1-\mathrm{P} 2$ | 85.2 (1) | $\mathrm{Cl}-\mathrm{Pl}-\mathrm{C} 21$ | 104.3 (1) |
| $\mathrm{P} 1-\mathrm{Os} 1-\mathrm{P} 2$ | 81.9 (1) | C11-P1-C21 | 103.3 (1) |
| $\mathrm{Os} 1-\mathrm{Pl}-\mathrm{Cl}$ | 109.0 (1) | C2-P2-C31 | 104.8 (1) |
| Os1-P1-Cl1 | 123.1 (1) | $\mathrm{C} 2-\mathrm{P} 2-\mathrm{C} 41$ | 101.2 (1) |
| Os1-P1-C21 | 116.5 (1) | C31-P2-C41 | 102.8 (1) |
| Os1-P2-C2 | 106.4 (1) | $\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$ | 113.4 (2) |
| Os1-P2-C31 | 117.7 (1) | P2-C2-Cl | 110.6 (2) |
| Os1-P2-C41 | 121.7 (1) |  |  |
| P1-C1-C2-P2 | 35.4 (3) |  |  |

Crystals were grown by vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the compound and mounted in glass capillaries. Five reflections thought to be suffering from extinction were excluded. For the disordered solvent molecule $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, isotropic C3S was not refined and no H atoms were included. The remaining H -atom positions were determined from electron-density maps but not refined. Data collection: Enraf-Nonius Structure Determination Package (Frenz, 1985). Cell refinement: Enraf-Nonius Structure Determination Package. Data reduction: Enraf-Nonius Structure Determination Package. Program(s) used to solve structure: SHELX76 (Sheldrick, 1976). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEPII (Johnson, 1976).

We thank the SERC and BP Chemicals Ltd for financial support (NRC) and Dr D. C. Povey of the University of Surrey for the X-ray data collection.

[^0]
## Structures of Two Encapsulated Cobalt(III) Complexes Containing cyclo-Triphosphate

Alessia Bacch<br>Istituto di Chimica Generale ed Inorganica, Universitá degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy<br>Francesco Ferranti<br>Dipartimento di Chimica Fisica ed Inorganica, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy<br>Giancarlo Pelzzi<br>Istituto di Chimica Generale ed Inorganica, Universitá degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy

(Received 10 February 1993; accepted 28 April 1993)

## Abstract

The conformational and packing properties of two encapsulated cobalt(III) complexes containing cyclotriphosphate have been investigated. Compound (I),
(1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]icosane)cobalt(III) cyclo-triphosphate-water ( $2 / 7$ ) has the trivial name cobalt(III) sepulchrate cyclo-triphosphate-water (2/7) and chemical formula $[\mathrm{Co}($ sep $)]\left(\mathrm{P}_{3} \mathrm{O}_{9}\right) \cdot 3 \cdot 5 \mathrm{H}_{2} \mathrm{O}$. The cation shows an lel $_{3}$ geometry very similar to those found in other sepulchrate complexes. The packing motif is given by one-dimensional chains of alternating cations and anions running along the $z$ direction and cross-linked by hydrogen-bonded water molecules. Compound (II) is [tris(aminoethylaminomethyl)amine]tris(ethylenediamine) dicobalt(III) di(cyclo-triphosphate) octahydrate, and has the chemical formula $\left[\mathrm{Co}\left(\mathrm{sep}^{\prime}\right)\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)\right]\left[\mathrm{Co}\left(\mathrm{sep}^{\prime}\right)_{0.72^{-}}\right.$ $\left.\left(\mathrm{en}_{3}\right)_{0.28}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (where sep $\left.{ }^{\prime}=\mathrm{C}_{9} \mathrm{H}_{27} \mathrm{~N}_{7}\right)$. Pseudotranslational symmetry is found, perturbed by the substitutional disorder $\mathrm{sep}^{\prime} / \mathrm{en}_{3} . B$-centering is therefore simulated involving the anions and water molecules. The crystal packing is similar to that found for compound (I), but the regularity of the chains is broken by the disorder.

## Comment

Sepulchrate (sep) and semisepulchrate (sep') are polydentate ligands able to encapsulate metal ions by means of coordination by six amine N atoms.


The X-ray structural aspects of sepulchrate complexes have been studied in previous works (Bacchi, Ferranti \& Pelizzi, 1993, and references therein), whereas up to now the X-ray structure of only one tris(aminoethylaminomethyl)amine (semisepulchrate) complex has been determined (Arkowska, Grazynska, Kubiak \& Paulus, 1989a), though the structure of a closely related compound is also known (Arkowska, Grazynska, Kubiak \& Paulus, 1989b). The short-range geometry of the cation $\mathrm{Co}(\mathrm{sep})^{3+}$ is shown to be quite insensitive to its structural surroundings and the crystal packing is determined mainly by the dimensions and geometry of the counter anions. The semisepulchrate cage is expected to be less rigid as it is much more reactive than the parent sepulchrate molecule. The conformational and packing properties of $[\mathrm{Co}(\mathrm{sep})]\left(\mathrm{P}_{3} \mathrm{O}_{9}\right) \cdot 3.5 \mathrm{H}_{2} \mathrm{O}$ (I) and of $\left[\mathrm{Co}\left(\mathrm{sep}^{\prime}\right)\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)\right]\left[\mathrm{Co}\left(\mathrm{sep}^{\prime}\right)_{0.72}\left(\mathrm{en}_{3}\right)_{0.28}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)\right] .8 \mathrm{H}_{2} \mathrm{O}$ (II) are reported here.

## Compound (I)

Fig. 1 shows the cation $\mathrm{Co}(\mathrm{sep})^{3+}$ hydrogen bonded to its neighboring anions and water molecules. The
cation shows the common $\operatorname{lel}_{3}$ conformation approaching $D_{3}$ pseudosymmetry. Its molecular geometry has been compared with those found for $\mathrm{rac}-[\mathrm{Co}(\mathrm{sep})] \mathrm{Cl}_{3}$ and $\left[\mathrm{Co}(\mathrm{sep})\left(\mathrm{ClO}_{4}\right)\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)\right]$ (Bacchi, Ferranti \& Pelizzi, 1993) by performing half-normal probability plot analyses (Abrahams \& Keve, 1971) on bond angles and interatomic distances between 1.0 and $9.9 \AA$ for all the non-H atoms. The resulting linear-regression parameters show that there are no significant differences among the three compounds. These results are in accordance with those observed previously, confirming that the sepulchrate cage behaves as an undeformable entity even when inserted in different packing environments, namely one-, two- and three-dimensional strong hydrogen-bonded networks involving $\mathrm{Cl}^{-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ and $\mathrm{ClO}_{4}^{-}$, and $\mathrm{P}_{3} \mathrm{O}_{3}^{3-}$, respectively.

The anion assumes a twisted boat conformation, with a slight distortion towards boat; the puckering parameters (Nardelli, 1983; following Cremer \& Pople, 1975) are $Q_{T}=0.579(8) \AA, \theta_{2}=92.2(8), \varphi_{2}=$ $79(1)^{\circ}$. The unit cell also contains 3.5 water molecules, O10, O11, O12 and O13 (disordered about an inversion center). Each cation interacts with two anions and one water molecule (O11) by means of hydrogen bonds: $\mathrm{N} 2 \cdots \mathrm{O}, 2.86$ (1); $\mathrm{N} 4 \cdots \mathrm{O}, 2.89$ (1); N5 $\cdots \mathrm{Ol}^{\mathrm{iiii}}$, 2.93 (1); N3 $\cdots 1^{\text {iii }}, 2.85$ (2) $\AA\left[(\mathrm{iii})=x,-y-\frac{1}{2}, z-\right.$ $\frac{1}{2}$ ]; N1 $\cdots$ O11, 2.96 (1); N6 $\cdots$ Ol1, 2.83 (2) A. The distorsions in the geometry of the $\mathrm{Co}(\mathrm{sep})\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)$ moiety from ideal $D_{3}$ symmetry are of the same type as those found for the $\mathrm{Co}(\mathrm{sep})\left(\mathrm{Cl}_{3}\right)$ moieties in rac$[\mathrm{Co}(\mathrm{sep})]\left(\mathrm{Cl}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$. They are mainly due to the different environments experienced by the three hydrogen acceptors O6, O1 and O11. O6 completes its tetrahedral environment by interacting with the water molecule O 12 [ $\mathrm{O} 6 \cdots \mathrm{O} 12,2.94$ (2) $\AA$ ] and closely approximates the ideal position for $D_{3}$ geometry; O1 shows a larger distortion because of the effects of steric repulsion by $\mathrm{C} 6\left[\mathrm{O} \cdots \mathrm{C}^{\text {viii }}, 3.27\right.$ (2) $\AA$; (viii) $\left.=x,-y-\frac{1}{2}, z+\frac{1}{2}\right]$


Fig. 1. ORTEP view of compound (I) with $50 \%$ probability thermal ellipsoids for the $\mathrm{Co}(\mathrm{sep})\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ moiety. Methylenic H atoms have been omitted.
and the weak hydrogen-bond attraction $\mathrm{C} 8-\mathrm{H} \cdots \mathrm{O} 1^{1 i i}$ [C8․O.O1 ${ }^{\text {iii }}, 3.30(2) \mathrm{A}$; (iii) $\left.=x,-y-\frac{1}{2}, z-\frac{1}{2}\right]$. The largest deviations from $D_{3}$ symmetry are associated with the O 11 atom because of its strong hydrogen bonds with the anion $\left[\mathrm{O} 11 \cdots \mathrm{O} 2^{\text {iv }}, 2.73\right.$ (1) $\AA$; (iv) $\left.=x, y+1, z\right]$ and $\mathrm{O} 10\left[\mathrm{O} 11 \cdots \mathrm{O} 10^{\mathrm{i}}, 2.73\right.$ (1) $\AA$; (i) $\left.=-x, y+\frac{1}{2},-z+\frac{1}{2}\right]$ as these weaken and distort its interactions with the cation. The full list of the hydrogen bonds formed by the cation is given in Table 3. Note that the anionic O atoms also make use of $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ interactions to complete their coordination geometry. Considering the direct anion-cation interactions [O6 $\cdots(\mathrm{N} 2, \mathrm{~N} 4)$ and $\mathrm{O} 1 \cdots(\mathrm{~N} 3, \mathrm{~N} 5)^{\text {viii }} ;($ viii) $=x$, $\left.-y-\frac{1}{2}, z+\frac{1}{2}\right]$, one may identify a zigzag-polymeric onedimensional connection along the $z$ direction (Fig. 2). The interactions among the subunits $\left[\mathrm{P}_{3} \mathrm{O}_{9}^{3-} \ldots \mathrm{Co}(\mathrm{sep})^{3+}\right]$ are related by the symmetry operations ( $x, y, z-\frac{n}{2}$ ) for $n$ even or ( $x,-y-\frac{1}{2}, z-\frac{n}{2}$ ) for $n$ odd. These chains are crosslinked by hydrogen-bonded water molecules.


Fig. 2. Crystal packing of compound (I). Methylenic H atoms have been omitted.

## Compound (II)

The first data collection gave the cell (I): $a=13.664$ (2), $b=11.552(2), c=14.620(2) \AA, \beta=103.55(4)^{\circ}, V=$ 2243.5 (6) $\AA^{3}, Z=4$ (monoclinic, space group $P 2_{1} / n$ ). The structure was solved by the heavy-atom technique of SHELXS86 (Sheldrick, 1986) and refined with SHELX76 (Sheldrick, 1976) to $R=7.45 \%$ ( $S=3.73$ ). Substitutional disorder was found for the cation, involving the simultaneous presence of the $\mathrm{Co}\left(\mathrm{sep}^{\prime}\right)^{3+}$ and $\mathrm{Co}(\mathrm{en})_{3}^{3+}$ cations,
with occupancies of 80 and $20 \%$, respectively. Correspondingly, the $\mathrm{P}_{3} \mathrm{O}_{9}^{3-}$ anion showed two conformations, giving a positional disorder. Four water molecules are present in the unit cell. The correlation between the substitutional disorder of the cations and the conformational changes of the anions led us to suspect the presence of two different cationic sites, occupied by $\mathrm{Co}\left(\operatorname{sep}^{\prime}\right)$ and $\mathrm{Co}(\mathrm{en})_{3}$, respectively, and related by a pseudo-translational symmetry which could give relatively strong subcell reflections. In this case the disorder would be due to the overlap of the two images situated erroneously in the subcell. A second cell determination was carried out which revealed the presence of some weak reflections indicating a new cell: $a=17.494$ (7) , $b=11.548(5), c=22.21$ (1) $\AA, \beta=$ $93.94(1)^{\circ}$ [cell (II)]. The matrix $R=[101 / 0-10 / 10-1]$ transforms cell (I) into cell (II) and the symmetry operations of $P 2_{1} / n$ are changed into those of $P 2_{1} / a$ by $\left(R^{-1}\right)^{T}$, where $T$ denotes transposition. $R$ corresponds to a centering operation and it must be stressed that collecting data in the cell (II) primitive reciprocal lattice allows us to detect the ( $h+l$ odd) reflections which were neglected by the previous data collection, because in the cell (I) reciprocal lattice they would have non-integer indexes.

A new data collection was performed which led to the following statistics: (1) $h k l, h+l$ odd few observed, systematically weak; (2) $h 0 l, h$ odd absent; (3) $0 k 0, k$ odd absent; (4) $h 0 l, h+l$ odd absent; (5) $h 0 l, l$ odd absent. Group (1) is the pseudo-centering condition which, if completely satisfied, would cause cell (II) to collapse into cell (I); groups (2) and (3) are the typical extinction conditions for $P 2_{1} / a$; groups (4) and (5) are pseudo-extinctions deriving from the pseudo-centering operation which, if performed on the coordinates in $P 2_{1} / a$, simulates $P 2_{1} / c$ and $P 2_{1} / n$ symmetries. So the disordered molecule lying at ( $x$, $y, z$ ) in cell (I) can be split into two molecules at ( $X, Y$, $Z$ ) and $\left(X+\frac{1}{2}, Y, Z+\frac{1}{2}\right)$ in cell (II), where $(X Y Z)^{*}=$ $\left(T^{-1}\right)^{\star}(x y z)^{\star}$. The two molecules must be slightly different to destroy the crystallographic translational symmetry. The coordinates of $\mathrm{Co} A$ of cell (II) were obtained by appropriately transforming the coordinates of Co of cell (I) and the coordinates of CoB were obtained by performing the $B$-centering on the coordinates of $\operatorname{Co} A$. The remaining non- H atoms were located by successive Fourier and $\Delta F$ calculations combined with least-squares refinements on $F^{2}$. The final $R$ value, calculated on the observed reflections so it may be compared with the $R$ value from the refinement of cell ( I ), is $6.54 \% ~(~ S=1.336$ ). The disorder $\mathrm{Co}\left(\mathrm{sep}^{\prime}\right) / \mathrm{Co}(\mathrm{en})_{3}$ does not vanish with the new cell setting, but it is confined to only four sites out of the eight belonging to the pseudo-centered cell, i.e. the cationic site at $(X, Y, Z)$ is fully occupied by $\mathrm{Co}\left(\mathrm{sep}^{\prime}\right)^{3+}$ (cation $A$ ), while the site at $\left(X+\frac{1}{2}, Y, Z+\frac{1}{2}\right)$ is occupied by $72 \%$ of $\mathrm{Co}\left(\mathrm{sep}^{\prime}\right)^{3+}$ (cation $B$ ) and by $28 \%$ of $\mathrm{Co}(\mathrm{en})^{3+}$ (cation $B^{\prime}$ ). The anions show the same distribution where $\mathrm{P}_{3} \mathrm{O}_{9}^{3-}(A)$ has a site occupancy of $100 \%$, while the corresponding pseudo- $B$-centered anion is disordered
on $\mathrm{P}_{3} \mathrm{O}_{9}^{3-}(B), 72 \%$, and $\left(B^{\prime}\right), 28 \%$. The simultaneous presence of a $B$ cation and a $B^{\prime}$ anion is excluded by the distance $\mathrm{O} 1 B^{\prime} \cdots \mathrm{N} 7 B(1.48 \AA$ ) being too short. The eight water molecules present in the unit cell are also paired by the pseudo-centering. The approximations of this model leave a non-negligible unexplained electronic density of about $1.4 \mathrm{e} \AA^{-3}$ in the region of the disordered moieties ( $1.45 \AA$ from $O 1 B$ ), but the residual electronic density is even higher for the refinement in cell (I) ( $1.67 \mathrm{e}_{\AA^{-3}}$, $1.85 \AA$ from Co ).

Geometric parameters for compound (II) are reported in Table 5. Fig. 3 shows how the cation $A$ is hydrogen bonded to anions and water molecules and Fig. 4 shows the substitutional disorder involving molecules $B$ and $B^{\prime}$. A statistical comparison based on the $\chi^{2}$ criterion of the positional parameters of the atoms in cations


Fig. 3. ORTEP view of compound (II) with $50 \%$ probability thermal ellipsoids for cation $A$ hydrogen bonded with surrounding $A$ and $B$ anions and water molecules. Methylenic H atoms have been omitted.



Fig. 4. Overlapped images of molecules $B$ and $B^{\prime}$ of compound (II), $B^{\prime}$ atoms with $28 \%$ occupancy and relative bonds are labeled and represented with small spheres and light sticks. H atoms have been omitted.
$A$ and $B$ (PARST; Nardelli, 1983) showed that the two cations are not significantly different. A similar comparison has shown that for the anions, the pseudo-centering condition does not hold accurately because of remarkable differences in the $Y$ orthogonal coordinates of the atoms in the $A$ and $B$ anions, if they are superimposed. This suggests that, although much more reactive than the parent sepulchrate compounds, once inserted in a crystalline lattice, semisepulchrate cationic complexes are also relatively rigid.
Under this assumption, a qualitative explanation can be attempted for the different behavior of cations and anions towards the requirements of pseudo-centering. The substitutional disorder of cations $B / B^{\prime}$ lowers the lattice symmetry, removing $28 \%$ of the $B$-centering, so causing a distortion in the environment of the $B$ and $B^{\prime}$ anions. Consequently, the flexible anions modify their conformation to optimize the crystal packing and a larger amount of $B$ centering is lost for the anionic sites. Nevertheless, a certain similarity in the geometry of anions $A$ and $B$ is maintained: they both show a conformation between chair and half boat, while the anion $B^{\prime}$ adopts a boat geometry with some half-boat character. The puckering parameters for the anions in cells (I) and (II) are reported in Table 6. The values relative to cell (I) show how the $A$ conformation in (I) is an almost perfect average of $A$ and $B$ conformations in (II), while the anion $B^{\prime}$ image is essentially independent of the cell choice. The cations $A, B$ and $B^{\prime}$ show the $l e l_{3}$ conformation and bond distances and angles are typical for these systems. The geometry of the cation $A$ has been compared with that of the common molecular fragment present in the $\mathrm{Co}(\text { sep })^{3+}$ cation of $\left[\mathrm{Co}(\mathrm{sep})\left(\mathrm{ClO}_{4}\right)\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)\right]$ (which adopts crystallographic $D_{3}$ symmetry), to which it is essentially identical. Molecules $A$ and $B$ have similar packing patterns, as shown by the list of selected hydrogen bonds in Table 7. The atoms O1A and O1B are most involved in the anionic interactions with the cations, since they cap the $\mathrm{N} 4 A-\mathrm{N} 1 A-\mathrm{N} 6 A$ and $\mathrm{N} 4 B-\mathrm{N} 1 B-$ N $6 B$ faces of the semisepulchrate cage, respectively. With the substitution of cation $B$ for cation $B^{\prime}$, the $\mathrm{O1}^{\prime} \boldsymbol{B}^{\prime}$ atom is pulled towards the $\mathrm{N} 2^{\prime} B-\mathrm{N} 3^{\prime} B-\mathrm{N} 6^{\prime} B^{\prime}$ hydrogen-bond acceptor system and consequently the conformation of the anion changes remarkably. The packing motif can be described by taking the ionic pairs $\left[\mathrm{Co}\left(\text { sep }^{\prime}\right) \cdots \mathrm{P}_{3} \mathrm{O}_{9}\right]^{A, B}$ as the fundamental subunits. Polymeric one-dimensional zigzag $A$ and $B$ chains are generated along the $Y$ direction by the hydrogen-bond interactions among subunits correlated by the operations ( $\frac{1}{2}-X+m, Y-\frac{n}{2}, 1-Z+m$ ) for $n$ odd ( $m=0$ for molecule $A, m=1$ for molecule $B$ ) and ( $X, Y-\frac{n}{2}, Z$ ) for $n$ even. The crystal packing is shown in Fig. 5. The regularity of the $B$ chains is perturbed by the uneven substitution $\mathrm{sep}^{\prime} / \mathrm{en}_{3}$, leading to the deformation of $B$ and $B^{\prime}$ anions as discussed previously. The $A$ chains are linked together by the water molecules $\mathrm{O} 12, \mathrm{O} 13$, O14, O15 through a network of hydrogen bonds; the same topology applies for the $B$ chains and O10, O11, O16,

O17. The linkages are mainly due to interactions between water molecules and phosphate anions. $A$ and $B$ chains are directly linked by the $\mathrm{N}^{A, B} \ldots \mathrm{O} 6^{B, A}$ and $\mathrm{N}^{4, B} \ldots \mathrm{O} 5^{B, A}$ hydrogen bonds.


Fig. 5. Crystal packing of compound (II). Empty circles represent atoms N7, C7, C8 and C9 of molecule B, with $72 \%$ occupancy, water molecules and Co atoms. H atoms have been omitted, as well as atoms with $28 \%$ occupancy in cation $B^{\prime}$.

## Experimental

Compound (I)
Crystal data
$\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{8}\right)\right]\left(\mathrm{P}_{3} \mathrm{O}_{9}\right) \cdot 3 \cdot 5 \mathrm{H}_{2} \mathrm{O} \quad D_{x}=1.6893 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=645.32$
Monoclinic
$P 2_{1} / c$
$a=15.887$ (3) $\AA$
$b=9.858(2) \AA$
$c=17.568(3) \AA$
$\beta=112.75(2)^{\circ}$
$V=2537.3(9) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\lambda=0.71070 \AA$
Cell parameters from 30 reflections
$\theta=9-17^{\circ}$
$\mu=0.9313 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Irregular prisms
$0.60 \times 0.26 \times 0.23 \mathrm{~mm}$
Yellow

## Data collection

Siemens AED diffractometer $\omega / 2 \theta$ scans
Absorption correction:
none
3930 measured reflections
3561 independent reflections 1847 observed reflections $[I>1.5 \sigma(I)]$
$\theta_{\text {max }}=23^{\circ}$
$h=-17 \rightarrow 17$
$k=0 \rightarrow 10$
$l=0 \rightarrow 19$
1 standard reflection monitored every 50 reflections intensity variation: none
$R_{\text {int }}=0.0294$

## Refinement

Refinement on $F$
Final $R=0.0581$
$w R=0.0644$
$S=3.208$

1768 reflections
458 parameters
All H -atom parameters re-
fined except for HIN,
H 6 N and H 2 O 1
Unit weights applied

Atomic scattering factors from International Tables for X-ray Crystallography [1974, Vol. IV, Tables 2.2A, 2.3.1 (Co, P, O, N, C) and $2.2 \mathrm{C}(\mathrm{H})$ ]

Program(s) used to solve structure: SHELXS86 (Sheldrick, 1986). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976); ABSORB (Ugozzoli, 1987; according to Walker \& Stuart, 1983). Molecular graphics: ORTEP (Johnson, 1965); PLUTO (Motherwell \& Clegg, 1976). Software used to prepare material for publication: PARST (Nardelli, 1983); ABRAHAMS (Gilli, 1977).

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for compound ( I )

| $U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}$ |
| Co | 0.24706 (11) | 0.11638 (17) | 0.22872 (9) | 0.0305 (6) |
| P1 | 0.2585 (2) | -0.3956 (3) | 0.4653 (2) | 0.0364 (14) |
| P2 | 0.3202 (2) | -0.1204 (4) | 0.5067 (2) | 0.0394 (13) |
| P3 | 0.1304 (2) | -0.1892 (4) | 0.4670 (2) | 0.0406 (13) |
| 01 | 0.2561 (6) | -0.5064 (9) | 0.5207 (5) | 0.0523 (42) |
| 02 | 0.2798 (6) | -0.4240 (9) | 0.3927 (5) | 0.0526 (42) |
| 03 | 0.1637 (6) | -0.3167 (9) | 0.4298 (6) | 0.0600 (42) |
| 04 | 0.3259 (5) | -0.2809 (8) | 0.5224 (5) | 0.0361 (34) |
| 05 | 0.3765 (6) | -0.0516 (9) | 0.5824 (5) | 0.0551 (44) |
| 06 | 0.3372 (6) | -0.0912 (9) | 0.4302 (5) | 0.0572 (45) |
| 07 | 0.2157 (6) | -0.0908 (10) | 0.4845 (7) | 0.0837 (53) |
| 08 | 0.1204 (8) | -0.2305 (14) | 0.5412 (7) | 0.1041 (72) |
| 09 | 0.0540 (6) | -0.1282 (10) | 0.4016 (5) | 0.0624 (41) |
| O10 | -0.0250 (6) | 0.1190 (10) | 0.3777 (5) | 0.0630 (44) |
| N1 | 0.1533 (7) | 0.1878 (9) | 0.2653 (6) | 0.0351 (42) |
| N2 | 0.2252 (7) | -0.0701 (9) | 0.2579 (6) | 0.0403 (44) |
| N3 | 0.1544 (6) | 0.0916 (10) | 0.1150 (5) | 0.0368 (41) |
| N4 | 0.3355 (6) | 0.1566 (9) | 0.3416 (6) | 0.0353 (40) |
| N5 | 0.3453 (7) | 0.0355 (11) | 0.2004 (6) | 0.0451 (44) |
| N6 | 0.2680 (7) | 0.2971 (11) | 0.1911 (6) | 0.0415 (43) |
| N7 | 0.0646 (7) | -0.0078 (12) | 0.1895 (6) | 0.0459 (43) |
| N8 | 0.4293 (8) | 0.2424 (14) | 0.2697 (7) | 0.0635 (63) |
| Cl | 0.0641 (8) | 0.1108 (17) | 0.2339 (7) | 0.0514 (54) |
| C2 | 0.1271 (9) | -0.1079 (15) | 0.2366 (7) | 0.0513 (55) |
| C3 | 0.0677 (8) | 0.0174 (14) | 0.1099 (7) | 0.0463 (55) |
| C4 | 0.1954 (9) | 0.1996 (13) | 0.3575 (8) | 0.0492 (60) |
| C5 | 0.2727 (12) | -0.1643 (15) | 0.2226 (8) | 0.0629 (76) |
| C6 | 0.1347 (9) | 0.2265 (14) | 0.0742 (8) | 0.0505 (61) |
| C7 | 0.2887 (9) | 0.2462 (13) | 0.3825 (8) | 0.0453 (53) |
| C8 | 0.2245 (9) | 0.2976 (14) | 0.0985 (8) | 0.0516 (60) |
| C9 | 0.3627 (10) | -0.1031 (17) | 0.2348 (8) | 0.0637 (70) |
| C10 | 0.3660 (10) | 0.3407 (16) | 0.2248 (9) | 0.0645 (71) |
| C11 | 0.4268 (8) | 0.2107 (15) | 0.3494 (8) | 0.0551 (63) |
| C12 | 0.4303 (9) | 0.1251 (22) | 0.2234 (10) | 0.0770 (77) |
| 011 | 0.1642 (7) | 0.4836 (9) | 0.2417 (6) | 0.0678 (48) |
| 012 | 0.5214 (8) | -0.1638(13) | 0.4429 (7) | 0.1036 (66) |
| 013 | 0.5366 (11) | 0.4374 (19) | 0.5872 (12) | 0.0589 (93) |

Table 2. Geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$ for compound (I)

| $\mathrm{Co}-\mathrm{N} 1$ | 1.97 (1) | N2-C2 | 1.50 (1) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Co}-\mathrm{N} 2$ | 1.98 (1) | N2-C5 | 1.48 (2) |
| $\mathrm{Co}-\mathrm{N} 3$ | 1.986 (8) | N3-C3 | 1.53 (1) |
| $\mathrm{Co}-\mathrm{N} 4$ | 1.977 (8) | N3-C6 | 1.49 (1) |
| $\mathrm{Co}-\mathrm{N} 5$ | 1.98 (1) | N4-C7 | 1.50 (1) |
| Co-N6 | 1.97 (1) | N4-Cl1 | 1.50 (1) |
| Pl-O1 | 1.47 (1) | N5-C9 | 1.48 (1) |
| $\mathrm{P} 1-\mathrm{O} 2$ | 1.47 (1) | N5-C12 | 1.53 (2) |
| $\mathrm{Pl}-\mathrm{O} 3$ | 1.594 (9) | N6-C8 | 1.50 (1) |
| P1-O4 | 1.613 (8) | N6-C10 | 1.50 (1) |
| P2-O4 | 1.602 (8) | N7-Cl | 1.41 (2) |
| P2-O5 | 1.452 (8) | N7-C2 | 1.42 (1) |


| P2-06 | 1.50 (1) | N7-C3 | 1.44 (1) | $a=17.494$ (7) A | $\mu=1.057 \mathrm{~mm}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P2-07 | 1.58 (1) | N8-C10 | 1.40 (1) | $b=11.548$ (5) $\AA$ | $T=293 \mathrm{~K}$ |
| P3-03 | 1.60 (1) | N8-C11 | 1.45 (2) | $c=22.21$ (1) $\AA$ | Irregular prisms |
| P3-07 | 1.60 (1) | ${ }^{\mathrm{N} 8-\mathrm{C} 12}$ | 1.42 (2) | $c=22.21(1) ~$ $\beta$ |  |
| P3-08 | 1.43 (1) | $\mathrm{C4}^{-\mathrm{C7}}$ | 1.45 (1) | $\beta=93.94$ (1) ${ }^{\circ}$ | $0.71 \times 0.40 \times 0.31 \mathrm{~mm}$ |
| P3-09 | 1.441 (8) | ${ }_{\text {C5-C9 }}$ | 1.49 (2) | $V=4476$ (3) $\AA^{3}$ | Orange |
| $\mathrm{N} 1-\mathrm{Cl}$ | 1.51 (1) | C6-C8 | 1.50 (1) | $Z=4$ |  |
| N1-C4 | 1.50 (1) |  |  |  |  |
| N5-Co-N6 | 91.6 (5) | $\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 5$ | 107.9 (8) | Data collection |  |
| N4-Co-N6 | 90.5 (4) | $\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 2$ | 115.9 (7) |  |  |
| $\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 5$ | 90.5 (4) | $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5$ | 113 (1) | Siemens AED diffractometer | $\theta_{\text {max }}=25$ |
| N3-C0-N6 | 85.9 (4) | Co-N3-C6 | 108.1 (7) | $\omega / 2 \theta$ scans | $h=-20 \rightarrow 20$ |
| $\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 5$ | 92.7 (4) | $\mathrm{Co}-\mathrm{N} 3-\mathrm{C} 3$ | 114.7 (7) | Absorption correction: | $k=0 \rightarrow 13$ |
| $\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 4$ | 175.2 (4) | C3-N3-C6 | 113 (1) | none | $l=0 \rightarrow 26$ |
|  | 175.5 (4) | $\mathrm{Co}-\mathrm{N} 4-\mathrm{Cl1}$ | 116.7 (7) | 8108 measured reflections | 1 standard reflection |
| ${ }_{\text {N } 2-C-C 0-N 5}^{\text {2- }}$ | 85.7 (5) 93.1 (4) | $\xrightarrow{\mathrm{Co}} \mathrm{C}-\mathrm{N} 4-\mathrm{N} 4-\mathrm{C} 711$ | 107.8 (7) 112.7 (9) | 7904 independent reflections | 1 monitored every 50 |
| $\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3$ | 90.6 (4) | $\mathrm{Co}-\mathrm{N} 5-\mathrm{Cl2}$ | 114 (1) | 3324 observed reflections | reflections |
| $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 6$ | 91.9 (4) | $\mathrm{Co}-\mathrm{N} 5-\mathrm{C} 9$ | 108.2 (9) | $2 \sigma(I)]$ | intensity varia |
| $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 5$ | 175.2 (4) | C9-N5-C12 | 115 (1) | $R .1$ | inensity variation. |
| $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 4$ | 86.3 (4) | $\mathrm{Co}_{0}-\mathrm{N} 6-\mathrm{Cl0}$ | 114.3 (8) | $R_{\text {int }}=0.0119$ |  |
| $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 3$ | 90.7 (4) | $\mathrm{Co}-\mathrm{N} 6-\mathrm{C} 8$ | 107.4 (8) |  |  |
| $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$ | 90.9 (4) | C8-N6-C10 | 114 (1) | Refinement |  |
| P1-O3-P3 | 129.5 (7) | $\mathrm{C} 2-\mathrm{N} 7-\mathrm{C} 3$ | 114 (1) | Refinement on $F^{2}$ |  |
| P1-O4-P2 | 127.3 (5) | $\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 3$ | 114 (1) | Refinement on $F^{2} 0.0654$ | $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$ |
| P2-07-P3 | 131.9 (7) | $\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 2$ | 114 (1) | $R[F>4 \sigma(F)]=0.0654$ | $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$ |
| $\mathrm{Co} 0-\mathrm{N} 1-\mathrm{C} 4$ | 107.6 (8) | $\mathrm{C11-N8-C12}$ | 113 (1) | $w R\left(F^{2}\right)=0.2034$ | $\left.+(0.1180 P)^{2}\right]$ |
| $\mathrm{Co}-\mathrm{Nl}-\mathrm{Cl}$ | 115.0 (8) | $\mathrm{C} 10-\mathrm{N} 8-\mathrm{C} 12$ | 114 (1) | $S=1.336$ | where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$ |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$ | 113 (1) | C10-N8-C11 | 114 (1) | 7888 reflections | $(\Delta / \sigma)_{\text {max }}=-3.907$ |
| Table 3. Geometric parameters of the hydrogen bonds formed by the cation ( $\AA,{ }^{\circ}$ ) of compound ( I ) |  |  |  | 462 parameters | $\Delta \rho_{\text {max }}=1.384 \mathrm{e}^{-3}$ |
|  |  |  |  | H -atom parameters not refined | $\begin{aligned} & \Delta \rho_{\min }=-0.584 \mathrm{e} \AA^{-3} \\ & \text { Extinction correction: none } \end{aligned}$ |
| $\begin{gathered} \sigma(\mathrm{N}-\mathrm{H})=0.12-0.16, \sigma(\mathrm{C}-\mathrm{H})=0.12-0.21 \AA ; \sigma(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})=11- \\ 15, \sigma(\mathrm{C}-\mathrm{H} \cdots \mathrm{O})=8-14^{\circ} . \end{gathered}$ |  |  |  |  | Atomic scattering factors as for compound (I) |


| $D-\mathrm{H} \cdots A$ | D-H | D.. $A$ | $D-\mathrm{H} \cdots \cdot$ | Symmetry |
| :---: | :---: | :---: | :---: | :---: |
| N1-H1N. . O11 | 0.88 | 2.96 (1) | 164 |  |
| N2-H2N. . O6 | 0.90 | 2.86 (1) | 158 |  |
| N3-H3N $\cdots$ O1 | 0.86 | 2.85 (2) | 159 | iii |
| N5-H5N. . Ol | 0.77 | 2.93 (1) | 174 | iii |
| N4-H4N . . O 6 | 0.77 | 2.89 (1) | 170 |  |
| N6-H6N. . Oll | 0.96 | 2.83 (2) | 145 |  |
| $\mathrm{C} 1-\mathrm{H} 11 \cdots \mathrm{O}$ | 1.02 | 3.51 (2) | 157 | i |
| $\mathrm{C} 1-\mathrm{H} 12 \cdots \mathrm{O} 10$ | 1.23 | 3.34 (2) | 144 |  |
| $\mathrm{C} 2-\mathrm{H} 21 \cdots \mathrm{O} 9$ | 1.30 | 3.52 (2) | 154 |  |
| C2-H22 . O 10 | 1.12 | 3.37 (2) | 142 | ii |
| C3-H31...O8 | 1.02 | 3.31 (2) | 152 | iii |
| C4-H41...O7 | 0.75 | 3.57 (2) | 159 |  |
| C5-H52.. 08 | 1.01 | 3.33 (2) | 152 | iii |
| C6-H62.. 09 | 1.12 | 3.49 (1) | 147 | i |
| C7-H71...O2 | 0.98 | 3.26 (2) | 125 | iv |
| C7-H72...O12 | 1.13 | 3.46 (2) | 137 | vii |
| C8-H81 . . O 1 | 0.98 | 3.30 (2) | 142 | iii |
| C8-H82 . . 07 | 0.84 | 3.49 (1) | 143 | v |
| C9-H91...N8 | 1.05 | 3.67 (2) | 145 | vi |
| C9-H92. . O 12 | 0.90 | 3.60 (2) | 156 |  |
| C10-H102... O | 0.99 | 3.31 (2) | 134 | $v$ |
| C11-H111...O5 | 1.07 | 3.28 (2) | 144 | vii |
| C12-H121...O13 | 1.12 | 3.48 (2) | 131 | $v$ |

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x,-y-$
$\frac{1}{2}, z-\frac{1}{2}$; (iv) $x, y+1, z$; (v) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (vi) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$;
(vii) $-x+1,-y,-z+1$.

## Compound (II)

## Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{27} \mathrm{~N}_{7}\right)_{0.72}\left(\mathrm{C}_{6} \mathrm{H}_{24}-\right.\right.$
$\left.\left.\mathrm{N}_{6}\right)_{0.28}\right]\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{27} \mathrm{~N}_{7}\right)\right]-$
$2\left(\mathrm{P}_{3} \mathrm{O}_{9}\right) .8 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1183.75$
Monoclinic
$P 2_{1} / a$

$$
\begin{aligned}
& D_{x}=1.7570 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71070 \AA \\
& \text { Cell parameters from } 30 \\
& \text { reflections } \\
& \theta=11-19^{\circ}
\end{aligned}
$$ 1986). Program(s) used to refine structure: SHELXL92 (Sheldrick, 1992). Molecular graphics: ORTEP (Johnson, 1965); PLUTO (Motherwell \& Clegg, 1976). Software used to prepare material for publication: PARST (Nardelli, 1983); ABRAHAMS (Gilli, 1977).

Table 4. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for compound (II)

| $U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}$ |
| $\mathrm{Co} A$ | 0.36734 (9) | 0.2629 (1) | 0.37774 (7) | 0.0146 (5) |
| P1A | 0.0913 (2) | 0.1968 (2) | 0.6333 (1) | 0.0234 (7) |
| P2A | 0.2484 (2) | 0.2417 (2) | 0.6731 (2) | 0.0179 (10) |
| P3A | 0.2004 (2) | 0.2291 (2) | 0.5448 (1) | 0.0197 (8) |
| O1A | 0.0957 (4) | 0.0684 (5) | 0.6328 (4) | 0.0349 (22) |
| O2A | 0.0201 (5) | 0.2518 (5) | 0.6461 (5) | 0.0326 (25) |
| O3A | 0.1579 (5) | 0.2488 (4) | 0.6786 (4) | 0.0195 (20) |
| O4A | 0.1180 (5) | 0.2464 (4) | 0.5704 (4) | 0.0192 (20) |
| O5A | 0.2776 (4) | 0.1266 (6) | 0.6909 (3) | 0.0334 (23) |
| O6A | 0.2840 (4) | 0.3426 (6) | 0.7044 (3) | 0.0299 (22) |
| 07A | 0.2552 (4) | 0.2604 (5) | 0.6024 (4) | 0.0210 (19) |
| O8A | 0.2107 (4) | 0.1076 (6) | 0.5279 (4) | 0.0426 (25) |
| 09A | 0.2102 (4) | 0.3188 (7) | 0.4991 (3) | 0.0404 (24) |
| N1A | 0.4630 (5) | 0.3418 (7) | 0.3583 (4) | 0.0306 (24) |
| N2A | 0.3869 (4) | 0.1602 (6) | 0.3090 (4) | 0.0247 (22) |
| N3A | 0.4213 (5) | 0.1572 (6) | 0.4353 (4) | 0.0269 (23) |
| N4A | 0.3607 (5) | 0.3679 (7) | 0.4467 (4) | 0.0268 (23) |
| N5A | 0.2696 (5) | 0.1885 (6) | 0.3914 (4) | 0.0257 (23) |
| N6A | 0.3084 (4) | 0.3745 (7) | 0.3268 (4) | 0.0257 (23) |
| N7A | 0.3459 (4) | 0.0100 (6) | 0.3789 (4) | 0.0212 (22) |
| C1A | 0.4827 (6) | 0.3048 (8) | 0.2970 (5) | 0.0206 (5) |
| C2A | 0.4668 (6) | 0.1776 (8) | 0.2940 (5) | 0.0224 (12) |
| C3A | 0.4097 (7) | 0.1971 (9) | 0.4987 (5) | 0.0370 (12) |
| C4A | 0.4133 (6) | 0.3273 (8) | 0.4974 (5) | 0.0468 (33) |
| C5A | 0.2106 (7) | 0.2325 (8) | 0.3438 (6) | 0.0436 (31) |


| C6A | 0.2257 (6) | 0.3597 (8) | 0.3385 (5) | 0.0455 (31) |
| :---: | :---: | :---: | :---: | :---: |
| C7A | 0.3698 (6) | 0.0337 (7) | 0.3196 (5) | 0.0528 (35) |
| C8A | 0.4035 (6) | 0.0312 (7) | 0.4266 (5) | 0.0468 (35) |
| C9A | 0.2714 (6) | 0.0576 (7) | 0.3910 (5) | 0.0433 (32) |
| $\mathrm{Co} B$ | 0.8672 (1) | 0.2578 (1) | 0.87785 (8) | 0.0531 (35) |
| P1B | 0.5913 (2) | 0.1961 (3) | 1.1331 (2) | 0.0528 (35) |
| P2B | 0.7487 (2) | 0.2464 (2) | 1.1733 (2) | 0.0192 (20) |
| P3B | 0.6999 (2) | 0.2369 (3) | 1.0449 (2) | 0.0197 (19) |
| O1B | 0.5954 (5) | 0.0703 (8) | 1.1329 (4) | 0.0256 (22) |
| O2B | 0.5184 (6) | 0.2491 (4) | 1.1458 (4) | 0.0311 (25) |
| O3B | 0.6586 (5) | 0.2483 (4) | 1.1794 (4) | 0.0201 (21) |
| O4B | 0.6169 (5) | 0.2476 (4) | 1.0710 (4) | 0.0195 (21) |
| O5B | 0.7804 (5) | 0.1324 (7) | 1.1949 (4) | 0.0461 (23) |
| O6B | 0.7820 (5) | 0.3502 (8) | 1.2034 (4) | 0.0465 (24) |
| O7B | 0.7555 (5) | 0.2563 (4) | 1.1028 (4) | 0.0230 (21) |
| O8B | 0.7115 (5) | 0.1082 (8) | 1.0273 (5) | 0.0303 (24) |
| O9B | 0.7099 (5) | 0.3170 (7) | 0.9982 (4) | 0.0237 (22) |
| N1B | 0.9619 (6) | 0.3436 (8) | 0.8578 (5) | 0.0133 (22) |
| $\mathrm{N} 2 B$ | 0.8870 (5) | 0.1588 (8) | 0.8093 (5) | 0.0138 (22) |
| N3B | 0.9228 (5) | 0.1583 (8) | 0.9352 (4) | 0.0138 (22) |
| N4B | 0.8586 (6) | 0.3667 (9) | 0.9470 (5) | 0.0218 (25) |
| N5B | 0.7694 (6) | 0.1856 (7) | 0.8896 (5) | 0.0127 (22) |
| N6B | 0.8063 (6) | 0.3748 (9) | 0.8265 (5) | 0.0220 (26) |
| N7B | 0.8438 (6) | 0.0127 (8) | 0.8798 (5) | 0.0219 (26) |
| C1B | 0.9766 (7) | 0.3109 (9) | 0.7970 (5) | 0.0371 (31) |
| C2B | 0.9696 (6) | 0.1811 (8) | 0.7948 (5) | 0.0259 (25) |
| C3B | 0.9100 (6) | 0.1937 (8) | 0.9967 (5) | 0.0250 (26) |
| C4B | 0.9107 (6) | 0.3213 (9) | 0.9963 (5) | 0.0324 (29) |
| C5B | 0.7099 (7) | 0.2428 (7) | 0.8444 (6) | 0.0304 (32) |
| C6B | 0.7262 (7) | 0.3635 (10) | 0.8365 (6) | 0.0199 (29) |
| C7B | 0.8692 (8) | 0.0336 (11) | 0.8217 (7) | 0.0304 (35) |
| C8B | 0.9026 (9) | 0.0344 (12) | 0.9270 (7) | 0.0391 (40) |
| C9B | 0.7727 (8) | 0.0549 (11) | 0.8909 (7) | 0.0327 (35) |
| Pl $B^{\prime}$ | 0.5928 (4) | 0.3014 (6) | 1.1340 (3) | 0.0131 (13) |
| Ol $B^{\prime}$ | 0.5936 (14) | 0.4329 (21) | 1.1324 (11) | 0.0425 (59) |
| O8B ${ }^{\prime}$ | 0.7114 (11) | 0.1819 (16) | 0.9991 (9) | 0.0224 (44) |
| O9 ${ }^{\prime}$ | 0.7082 (12) | 0.3863 (19) | 1.0235 (10) | 0.0307 (50) |
| N1 $B^{\prime}$ | 0.8838 (11) | 0.3374 (17) | 0.8093 (9) | 0.0105 (42) |
| $\mathrm{N} 2 B^{\prime}$ | 0.9599 (11) | 0.1550 (17) | 0.8587 (9) | 0.0087 (41) |
| N3 $B^{\prime}$ | 0.8606 (13) | 0.1348 (19) | 0.9500 (10) | 0.0186 (50) |
| N4B ${ }^{\prime}$ | 0.9212 (11) | 0.3457 (17) | 0.9322 (9) | 0.0085 (41) |
| N5 $B^{\prime}$ | 0.7702 (11) | 0.3181 (17) | 0.8905 (9) | 0.0109 (43) |
| N6 $B^{\prime}$ | 0.8030 (13) | 0.1183 (20) | 0.8296 (10) | 0.0212 (52) |
| C6 ${ }^{\prime}$ | 0.7220 (18) | 0.1346 (28) | 0.8382 (15) | 0.0303 (72) |
| 010 | 0.9159 (4) | 0.0631 (7) | 0.1507 (4) | 0.0352 (51) |
| 011 | 0.9135 (4) | 0.4373 (7) | 0.1524 (4) | 0.0200 (44) |
| O 12 | 0.5876 (5) | 0.4086 (6) | 0.4373 (4) | 0.0389 (50) |
| Ol3 | 0.0780 (5) | 0.3818 (8) | 0.4276 (4) | 0.0219 (45) |
| O14 | 0.4182 (4) | 0.0641 (7) | 0.6477 (5) | 0.0258 (48) |
| O15 | 0.4125 (5) | 0.4376 (7) | 0.6547 (4) | 0.0361 (52) |
| 016 | 1.0872 (5) | 0.4022 (7) | 0.9375 (4) | 0.0495 (57) |
| 017 | 0.5807 (5) | 0.3881 (8) | -0.0685 (4) | 0.0353 (51) |


| $\mathrm{N} 3 A-\mathrm{C} 8$ A | 1.50 (1) | N3B-C8B | 1.48 (1) |
| :---: | :---: | :---: | :---: |
| $\mathrm{N} 4 A-\mathrm{C} 4 A$ | 1.48 (1) | N4B-C4B | 1.47 (1) |
| N5A-C5A | 1.51 (1) | N5B-C5B | 1.54 (1) |
| N5A-C9A | 1.51 (1) | N5B-C9B | 1.51 (1) |
| N6A-C6A | 1.50 (1) | N6B-C6B | 1.44 (1) |
| $\mathrm{N} 7 A-\mathrm{C} 7 A$ | 1.43 (1) | N7B-C7B | 1.41 (1) |
| $\mathrm{N} 7 A-\mathrm{C} 8$ A | 1.43 (1) | N7B-C8B | 1.44 (1) |
| N7A-C9A | 1.46 (1) | N7B-C9B | 1.37 (1) |
| $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$ | 1.50 (1) | C1B-C2B | 1.50 (1) |
| C3A-C4A | 1.50 (1) | C3B-C4B | 1.47 (1) |
| C5A-C6A | 1.50 (1) | C5B-C6B | 1.44 (1) |
| $\mathrm{N} 5 A-\mathrm{Co} A-\mathrm{N} 6 \mathrm{~A}$ | 87.0 (3) | $\mathrm{N} 5 B-\mathrm{CoB}-\mathrm{N} 6 B$ | 85.9 (4) |
| $\mathrm{N} 4 A-\mathrm{Co} A-\mathrm{N} 6 A$ | 89.3 (3) | $\mathrm{N} 4 B-\mathrm{Co} B-\mathrm{N} 6 B$ | 87.1 (4) |
| $\mathrm{N} 4 A-\mathrm{Co} A-\mathrm{N} 5 A$ | 92.9 (3) | $\mathrm{N} 4 B-\mathrm{Co} B-\mathrm{N} 5 B$ | 93.1 (4) |
| $\mathrm{N} 3 \mathrm{~A}-\mathrm{Co} A-\mathrm{N} 6 A$ | 174.5 (3) | $\mathrm{N} 3 B \rightarrow \mathrm{Co} B-\mathrm{N} 6 B$ | 172.9 (4) |
| $\mathrm{N} 3 \mathrm{~A}-\mathrm{Co}$ A- N 5 A | 90.7 (3) | $\mathrm{N} 3 B-\mathrm{Co} B-\mathrm{N} 5 B$ | 93.7 (4) |
| $\mathrm{N} 3 A-\mathrm{Co} A-\mathrm{N} 4 A$ | 85.8 (3) | $\mathrm{N} 3 B-\mathrm{CoB}-\mathrm{N} 4 B$ | 85.9 (4) |
| $\mathrm{N} 2 A-\mathrm{Co} A-\mathrm{N} 6 A$ | 93.5 (3) | $\mathrm{N} 2 B-\mathrm{Co} B-\mathrm{N} 6 B$ | 93.8 (4) |
| $\mathrm{N} 2 \mathrm{~A}-\mathrm{Co} A-\mathrm{N} 5 \mathrm{~A}$ | 93.2 (3) | $\mathrm{N} 2 B-\mathrm{Co} B-\mathrm{N} 5 B$ | 93.4 (4) |
| $\mathrm{N} 2 A-\mathrm{Co} A-\mathrm{N} 4 A$ | 173.4 (3) | $\mathrm{N} 2 B-\mathrm{Co} B-\mathrm{N} 4 B$ | 173.5 (4) |
| $\mathrm{N} 2 A-\mathrm{Co} A-\mathrm{N} 3 A$ | 91.7 (3) | $\mathrm{N} 2 B-\mathrm{Co} B-\mathrm{N} 3 B$ | 93.3 (4) |
| $\mathrm{N} 1 A-\mathrm{Co} A-\mathrm{N} 6 A$ | 89.4 (3) | $\mathrm{N} 1 B-\mathrm{Co} B-\mathrm{N} 6 B$ | 87.4 (4) |
| $\mathrm{N} 1 A-\mathrm{Co} A-\mathrm{N} 5 A$ | 176.0 (3) | $\mathrm{N} 1 B-\mathrm{Co} B-\mathrm{N} 5 B$ | 173.2 (4) |
| $\mathrm{N} 1 A-\mathrm{Co} A-\mathrm{N} 4 A$ | 89.0 (4) | $\mathrm{N} 1 B-\mathrm{Co} B-\mathrm{N} 4 B$ | 88.1 (4) |
| $\mathrm{N} 1 A-\mathrm{Co} A-\mathrm{N} 3 A$ | 93.0 (3) | $\mathrm{N} 1 B-\mathrm{Co} B-\mathrm{N} 3 B$ | 93.1 (4) |
| $\mathrm{N} 1 A-\mathrm{Co} A-\mathrm{N} 2 A$ | 85.1 (3) | $\mathrm{N} 1 B-\mathrm{Co} B-\mathrm{N} 2 B$ | 85.5 (4) |
| $\mathrm{P} 1 A-\mathrm{O} 3 A-\mathrm{P} 2 A$ | 127.8 (6) | $\mathrm{P} 1 B-\mathrm{O} 3 B-\mathrm{P} 2 B$ | 128.3 (5) |
| $\mathrm{P} 1 A-\mathrm{O} 4 A-\mathrm{P} 3 A$ | 126.0 (5) | $\mathrm{P} 1 B-\mathrm{O} 4 B-\mathrm{P} 3 B$ | 126.8 (6) |
| $\mathrm{P} 2 A-\mathrm{O} 7-\mathrm{P} 3 \mathrm{~A}$ | 132.9 (5) | $\mathrm{P} 2 B-\mathrm{O} 7 B-\mathrm{P} 3 B$ | 135.5 (6) |
| $\mathrm{Co} A-\mathrm{N} 1 A-\mathrm{Cl} A$ | 108.6 (6) | $\mathrm{Co} B-\mathrm{N} 1 B-\mathrm{C} 1 B$ | 106.3 (7) |
| $\mathrm{Co} A-\mathrm{N} 2 A-\mathrm{C} 7 \mathrm{~A}$ | 114.3 (5) | $\mathrm{Co} B-\mathrm{N} 2 B-\mathrm{C} 7 B$ | 111.6 (7) |
| $\mathrm{Co} A-\mathrm{N} 2 A-\mathrm{C} 2 A$ | 108.0 (6) | $\mathrm{Co} B-\mathrm{N} 2 B-\mathrm{C} 2 B$ | 106.7 (7) |
| $\mathrm{C} 2 A-\mathrm{N} 2 A-\mathrm{C} 7 A$ | 111.6 (7) | $\mathrm{C} 2 B-\mathrm{N} 2 B-\mathrm{C} 7 B$ | 114.3 (9) |
| $\mathrm{Co} A-\mathrm{N} 3 A-\mathrm{C} 8$ A | 115.7 (6) | $\mathrm{Co} B-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 8 B$ | 112.9 (8) |
| $\mathrm{Co} A-\mathrm{N} 3$ - -C 3 A | 109.2 (6) | $\mathrm{Co} B-\mathrm{N} 3 B-\mathrm{C} 3 B$ | 110.4 (7) |
| $\mathrm{C} 3 A-\mathrm{N} 3 A-\mathrm{C} 8 A$ | 112.2 (7) | $\mathrm{C} 3 B-\mathrm{N} 3 B-\mathrm{C} 8 B$ | 109.6 (9) |
| $\mathrm{Co} A-\mathrm{N} 4 \mathrm{~A}-\mathrm{C} 4 A$ | 109.3 (6) | $\mathrm{Co} B-\mathrm{N} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$ | 105.8 (7) |
| $\mathrm{Co} A-\mathrm{N} 5 A-\mathrm{C} 9 \mathrm{~A}$ | 114.8 (5) | $\mathrm{CoB-N} 5 B-\mathrm{C} 9 \mathrm{~B}$ | 113.5 (7) |
| $\mathrm{Co} A-\mathrm{N} 5 A-\mathrm{C} 5 A$ | 107.7 (6) | $\mathrm{CoB}-\mathrm{N} 5 \mathrm{~B}-\mathrm{C} 5 B$ | 106.8 (7) |
| C5A-N5A-C9A | 110.1 (7) | C5B-N5B-C9B | 117.5 (8) |
| C 0 A-N6A-C6A | 107.6 (6) | $\mathrm{Co}-\mathrm{B}-\mathrm{N} 6 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$ | 109.4 (8) |
| $\mathrm{C} 8 A-\mathrm{N} 7 A-\mathrm{C} 9 \mathrm{~A}$ | 113.2 (7) | $\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 7 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$ | 115 (1) |
| $\mathrm{C} 7 A-\mathrm{N} 7 A-\mathrm{C} 9 A$ | 114.7 (8) | $\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 7 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$ | 117 (1) |
| $\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 7 A-\mathrm{C} 8$ A | 114.3 (8) | $\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 7 \mathrm{~B}-\mathrm{C} 8 B$ | 112 (1) |

Table 6. Puckering coordinates of $\mathrm{P}_{3} \mathrm{O}_{9}^{3-}$ for compounds

| (I) and (II) [cells (I) and (II)] |  |  |  |
| :--- | :---: | :---: | :--- |
|  | $\varphi_{2}\left({ }^{\circ}\right)$ | $\theta_{2}\left({ }^{\circ}\right)$ | $Q_{T}(\AA)$ |
| Compound (I) |  | $79(1)$ | $92.2(8)$ |
| Compound (II) |  |  | $0.579(8)$ |
| Cell (I) Molecule $A$ | $17(1)$ | $26.3(7)$ | $0.435(5)$ |
|  | $B$ | $173.1(6)$ | $104.4(7)$ |
| Cell (II) Molecule $A$ | $-18.5(1)$ | $20.6(6)$ | $0.49(1)$ |
|  | $B$ | $-12(1)$ | $33.2(6)$ |
|  | $B^{\prime}$ | $-174.1(5)$ | $110.4(5)$ |
|  |  |  | $0.417(4)$ |
|  |  |  |  |

Table 7. Geometric parameters of the hydrogen bonds formed by the $A$ and $B$ cations ( $\AA,{ }^{\circ}$ ) of compound (II)

| $D-\mathrm{H} \cdots \mathrm{A}$ | D-H | D $\cdots$ A | D-H. . A | Symmetry |
| :---: | :---: | :---: | :---: | :---: |
| N1A-HINC..O1A | 1.02 | 2.82 (1) | 161 | v |
| N1A-H1ND. . Ol 2 | 1.10 | 2.81 (1) | 127 |  |
| $\mathrm{N} 2 A-\mathrm{H} 2 \mathrm{~N} A \ldots \mathrm{O} 6 \mathrm{~B}$ | 1.02 | 2.88 (1) | 150 | iv |
| N3A-H3NA $\cdots \mathrm{Ol} 3$ | 1.02 | 2.79 (1) | 155 | ii |
| N4A-H4NC. . O9A | 0.98 | 3.00 (1) | 143 |  |
| N4A-H4ND. . Ol A | 1.08 | 3.04 (1) | 165 | v |
| N5A-H5NA. . O9A | 1.11 | 3.07 (1) | 152 |  |
| N6A-H6NC. . O E ${ }^{\text {B }}$ | 1.14 | 2.94 (1) | 143 | iv |
| N6A-H6ND. . Ol A | 1.07 | 2.90 (1) | 150 | v |
| N1B-HINE. . Ol $B$ | 1.02 | 2.81 (1) | 160 | vii |
| N1B-HINF.. 016 | 0.89 | 2.80 (1) | 136 |  |
| $\mathrm{N} 2 B-\mathrm{H} 2 \mathrm{~N} B \cdots \mathrm{O} A$ | 0.73 | 2.84 (1) | 150 | ii |
| N3B-H3NB. . Ol 7 | 0.77 | 2.82 (1) | 179 | vi |
| $\mathrm{N} 4 B-\mathrm{H} 4 \mathrm{NE} \ldots \mathrm{O}$. ${ }^{\text {a }}$ | 1.02 | 2.96 (1) | 171 |  |
| N4B-H4NF. . O1B | 0.86 | 3.09 (2) | 131 | vii |


| N4 $B-\mathrm{H} 4 \mathrm{~N} F \cdots$ O8B | 0.86 | $3.11(2)$ | 145 | vii |
| :--- | :--- | :--- | :--- | :--- |
| N5B-H5N $B \cdots$ O9 $B$ | 0.94 | $3.09(2)$ | 168 |  |
| N6B-H6NE O1B | 1.02 | $2.94(1)$ | 160 | vii |
| N6B-H6N $F \cdots$ O5A | $0.63(1)$ | $3.02(2)$ | 144 | ii |

Symmetry codes: (i) $x, y, z-1$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (iii) $-x+1$, $-y+1,-z+1$; (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z-1$; (v) $-x+\frac{1}{2}, y+\frac{1}{2},-z+1$; (vi) $x+\frac{1}{2},-y+\frac{1}{2}, z+1$; (vii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+2$.

Compound (I) was obtained by treating $\mathrm{Co}(\mathrm{sep}) \mathrm{Cl}_{3}$ (Bacchi, Ferranti \& Pelizzi, 1993) with an equivalent amount of $\mathrm{Ag}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ in aqueous solution; AgCl was filtered off and after slow evaporation compound (I) precipitated in crystalline form. The structure was solved and refined with standard procedures; all nonH atoms were refined anisotropically. H atoms were localized by difference Fourier maps and were refined isotropically in a full-matrix least-squares cycle except for $\mathrm{H} 1 \mathrm{~N}, \mathrm{H} 6 \mathrm{~N}$ and H 2 O 1 which did not show a steady refinement. All H atoms were held fixed in the last least-squares cycles to achieve a better convergence.

Compound (II) was prepared as for (I): a chloride complex obtained by employing a smaller amount of $\mathrm{NH}_{3}$ and $\mathrm{CH}_{2} \mathrm{O}$ in the step involving the formation of the ligand cage was treated with $\mathrm{Ag}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$. The observed threshold $I>2 \sigma(I)$ is used only for calculating $R_{\text {obs }}$ etc., for comparison with refinements on $F$. The refinement was performed with anisotropic thermal parameters for the $\mathrm{Co}, \mathrm{P}, \mathrm{N}$ and O atoms of molecule $A$, for the $\mathrm{Co}, \mathrm{P} 2, \mathrm{P} 3$ atoms of molecule $B$ and for the O atoms of the water molecules. The remaining atoms were refined isotropically. Methylene hydrogens, H1NC, H1NE, H4NE, H6NE, H101, H142, H151, H152 and H172 were introduced in calculated positions; the remaining amine and water H atoms were located by difference Fourier maps and held fixed in successive least-squares calculations. The $z$ and $U_{33}$ parameters are, in general, affected by the largest shift/e.s.d. and, in particular, unstable refinement is observed for the $z$ coordinate of C 3 and C 4 of both molecules, probably due to the correlation effects introduced by pseudosymmetry.

Extensive use was made of the Cambridge Structural Database. Calculations were performed on Encore-GouldPowernode 6040 and Encore 91 computers of the Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71306 ( 82 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL1051]

## References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Arkowska, A., Grazynska, E., Kubiak, R. \& Paulus, H. (1989a). Inorg. Chim. Acta, 156, 175-176.
Arkowska, A., Grazynska, E., Kubiak, R. \& Paulus, H. (1989b). Inorg. Chim. Acta, 159, 153-155.
Bacchi, A., Ferranti, F. \& Pelizzi, G. (1993). Acta Cryst. C49, 11631169.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Gilli, G. (1977). ABRAHAMS. Program for Calculating Half-Normal Probability Plots. Univ. di Ferrara, Italy.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. \& Clegg, W. (1976). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1992). SHELXL92. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Ugozzoli, F. (1987). Comput. Chem. 11, 109-120.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1892-1895

## Structure of Dicarbonyl( $8,9,11,12,13,14-\eta)$ -12,19-dimethoxypodocarpa-8,11,13-triene]thiocarbonylchromium(0)

George R. Clark,* Richard C. Cambie, Malcolm D. King, P. Stewart Rutledge and<br>paul D. Woodgate*<br>Department of Chemistry, University of Auckland, Auckland, New Zealand

(Received 21 December 1992; accepted 26 April 1993)

## Abstract

The structure determination of the title compound [dicarbonyl $\eta^{6}-1,2,3,4,4 \mathrm{a}, 9,10,10 \mathrm{a}-$ octahydro-6-meth-oxy-1-methoxymethyl-1,4a-dimethylphenanthrene)thiocarbonylchromium $(0)$ ] establishes that the $\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{CS})$ moiety binds to the aromatic ring from the side opposite to that of the methyl group on C12, giving the $\alpha$ stereoisomer. The carbonyl and thiocarbonyl groups are oriented approximately halfway between the staggered and eclipsed positions.

## Comment

The title compound (I) was prepared during a study of the cyclopentaannulation of diterpenoids mediated by organotransition-metal complexes. In

(I)
view of the fact that the preferred conformation of the $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety in a related diterpenoid tricarbonylchromium complex controlled the regiochemistry of attack of cyano-stabilized carbanions


[^0]:    Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71319 ( 32 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1057]

    ## References

    Champness, N. R., Levason, W., Pletcher, D., Spicer, M. D. \& Webster, M. (1992). J. Chem. Soc. Dalton Trans. pp. 2201-2207.

    Cotton, F. A., Diebold, M. P. \& Matusz, M. (1987). Polyhedron, 6, 1131-1134.
    Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
    Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
    Lobana, T. S., Singh, R. \& Tiekink, E. R. T. (1990). J. Coord. Chem. 21, 225-229.
    Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

    Acta Cryst. (1993). C49, 1885-1892

